Not Only Rewards but Also Constraints: Applications on Legged Robot Locomotion

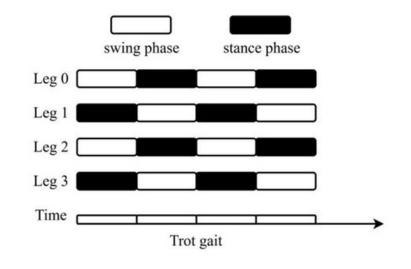
Paper Review 24.09.01 김지홍

Introduction

- Step to build an RL controller
 - 1. Design a neural network architecture with observation and action spaces.
 - 2. Generate abundant environment interaction scenarios.
 - 3. Design Reward terms and tune their reward coefficients.

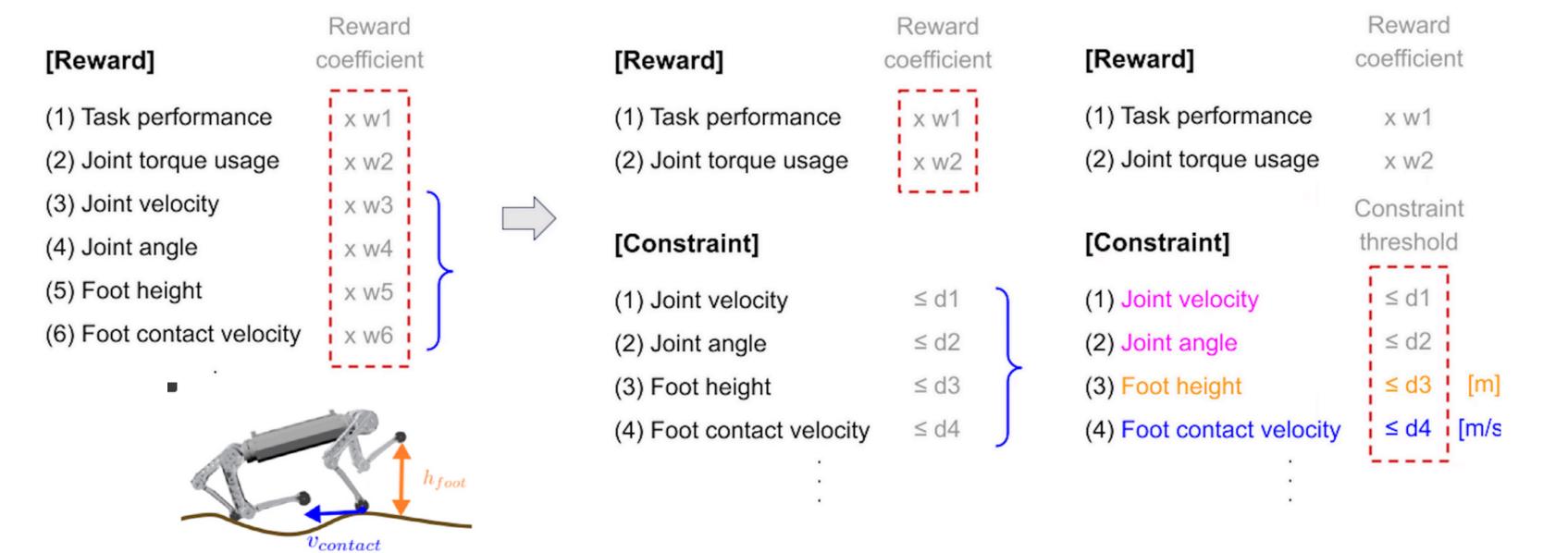
Why constraints have not been used explicitly to train policies for complex robotic systems?

- Advantages of using Constraints.
 - 1. Training pipeline will be more generalizable across similar robot platforms
 - 2. Engineering process will be more straightforward and less time-consuming



Contribution

- Introduce an RL framework consisting of both rewards and constraints.
- Demonstrate the capability of leveraging constraints in the learning pipeline in real-world.



Constrained Markov Decision Process

$$\pi^* = \arg \max_{\pi \in \Pi_{\theta}} J(\pi)$$

$$\pi^* = \arg \max_{\pi \in \Pi_{\theta}} J(\pi)$$
s.t. $J_{C_k}(\pi) \le d_k \quad \forall k \in \{1, ..., K\}$

(1) Probabilistic constraint

$$Prob((s, a, s') \notin \mathbf{S})$$

$$= \underset{\rho, \pi, P}{\mathbb{E}} [C_k(s, a, s')] \leq D_k$$

$$C_k(s, a, s') = \begin{cases} 0, & \text{if } (s, a, s') \in \mathbf{S} \\ 1, & \text{otherwise,} \end{cases}$$

(2) Average constraint

$$\mathbb{E}_{\rho,\pi,P}[f(s,a,s')]$$

$$= \mathbb{E}_{\rho,\pi,P}[C_k(s,a,s')] \leq D_k$$

$$C_k(s, a, s') = f(s, a, s')$$

$$J(\pi) := \underset{\rho,\pi,P}{\mathbb{E}} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t, s_{t+1}) \right]$$
$$J_{C_k}(\pi) := \underset{\rho,\pi,P}{\mathbb{E}} \left[\sum_{t=0}^{\infty} \gamma^t C_k(s_t, a_t, s_{t+1}) \right].$$

$$\pi_{i+1} = \arg \max_{\pi \in \Pi_{\theta}} \underset{\substack{s \sim d^{\pi_i} \\ a \sim \pi}}{\mathbb{E}} \left[A^{\pi_i}(s, a) \right]$$
s.t.
$$J_{C_k}(\pi_i) + \frac{1}{1 - \gamma} \underset{\substack{s \sim d^{\pi_i} \\ a \sim \pi}}{\mathbb{E}} \left[A^{\pi_i}_{C_k}(s, a) \right] \leq d_k \quad \forall k$$

$$\bar{D}_{KL}(\pi | | \pi_i) \leq \delta$$

[42] J. Achiam, D. Held, A. Tamar, and P. Abbeel, "Constrained policy optimization," in Proc. Int. Conf. Mach. Learn., 2017

[48] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, "Trust region policy optimization," in Proc. Int. Conf. Mach. Learn., 2015

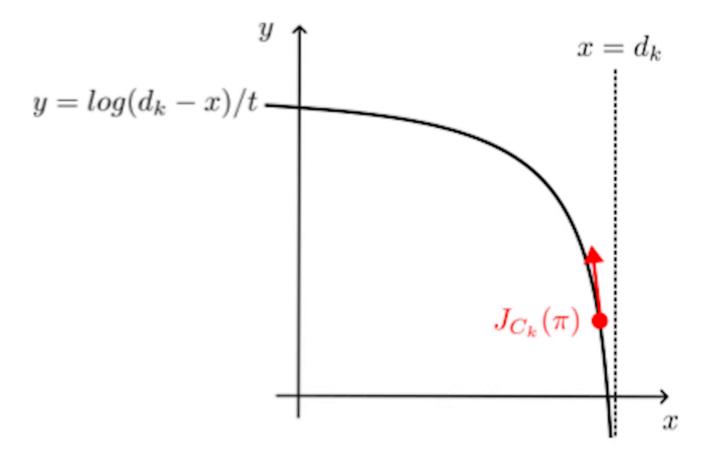
[43] Y. Liu, J. Ding, and X. Liu, "IPO: Interior-point policy optimization under constraints," in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 04, 2020

Policy Optimization

$$J_{C_k}(\pi) := \mathbb{E}_{\rho,\pi,P} \left[\sum_{t=0}^{\infty} \gamma^t C_k(s_t, a_t, s_{t+1}) \right] \le d_k$$

$$\underset{\pi \in \Pi_{\theta}}{\text{maximize }} J(\pi) + \sum_{k=1}^{K} \log \left(d_k - J_{C_k}(\pi) \right) / t$$

penalize the policy as it gets closer to violating the constraint.



- If $J_{Ck}(\pi)$ is low
 - policy is well within the constraint
 - logarithmic term has a high value
 - contributes positively to the overall objective function
- If $J_{Ck}(\pi)$ approached d_k
 - effectively reducing the overall objective function
 - apply steep penalty as it gets closer to the constraint limit
- If d_k is too low
 - ensure safety, but limit the policy's ability to explore and achieve high rewards
 - lead to sub-optimal policies where the agent is overly conservative

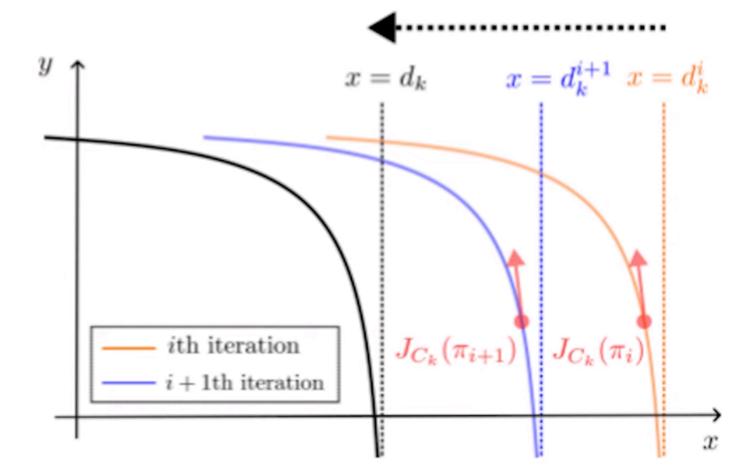
Modified IPO

Adaptive Constraint Thresholding

$$J_{C_k}(\pi) := \mathbb{E}_{\rho,\pi,P} \left[\sum_{t=0}^{\infty} \gamma^t C_k(s_t, a_t, s_{t+1}) \right] \le d_k$$

$$\underset{\pi \in \Pi_{\theta}}{\text{maximize }} J(\pi) + \sum_{k=1}^{K} \log (d_k - J_{C_k}(\pi)) / t$$

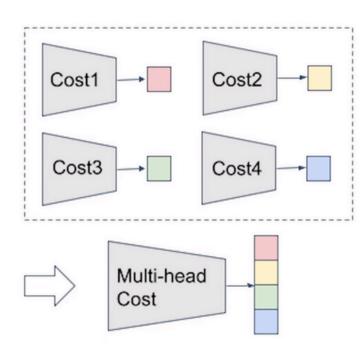
$$d_k^i = \max(d_k, J_{C_k}(\pi_i) + \alpha \cdot d_k)$$



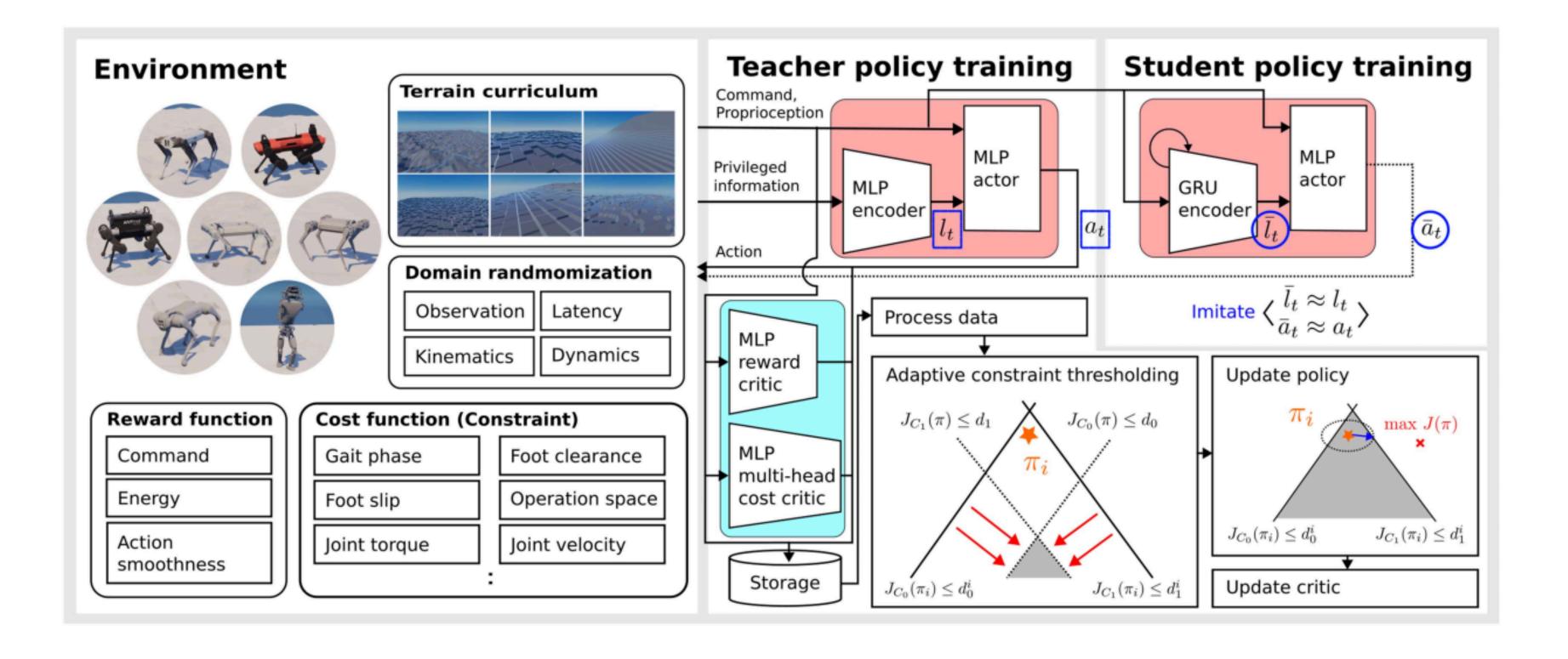
Multihead Cost Value Function

$$ext{Total Reward} = c_1 imes R_1 + c_2 imes R_2 + \cdots + c_n imes R_n$$
 $J_{Ck}(\pi) \leq d_k \quad ext{for all } k$

- There are multiple constraints, cannot combined into a single scalar value like the reward.
- Instead of training completely separate neural networks for each constraint, the multihead architecture allows the network to share a common backbone.
- A single neural network estimates all constraint values.



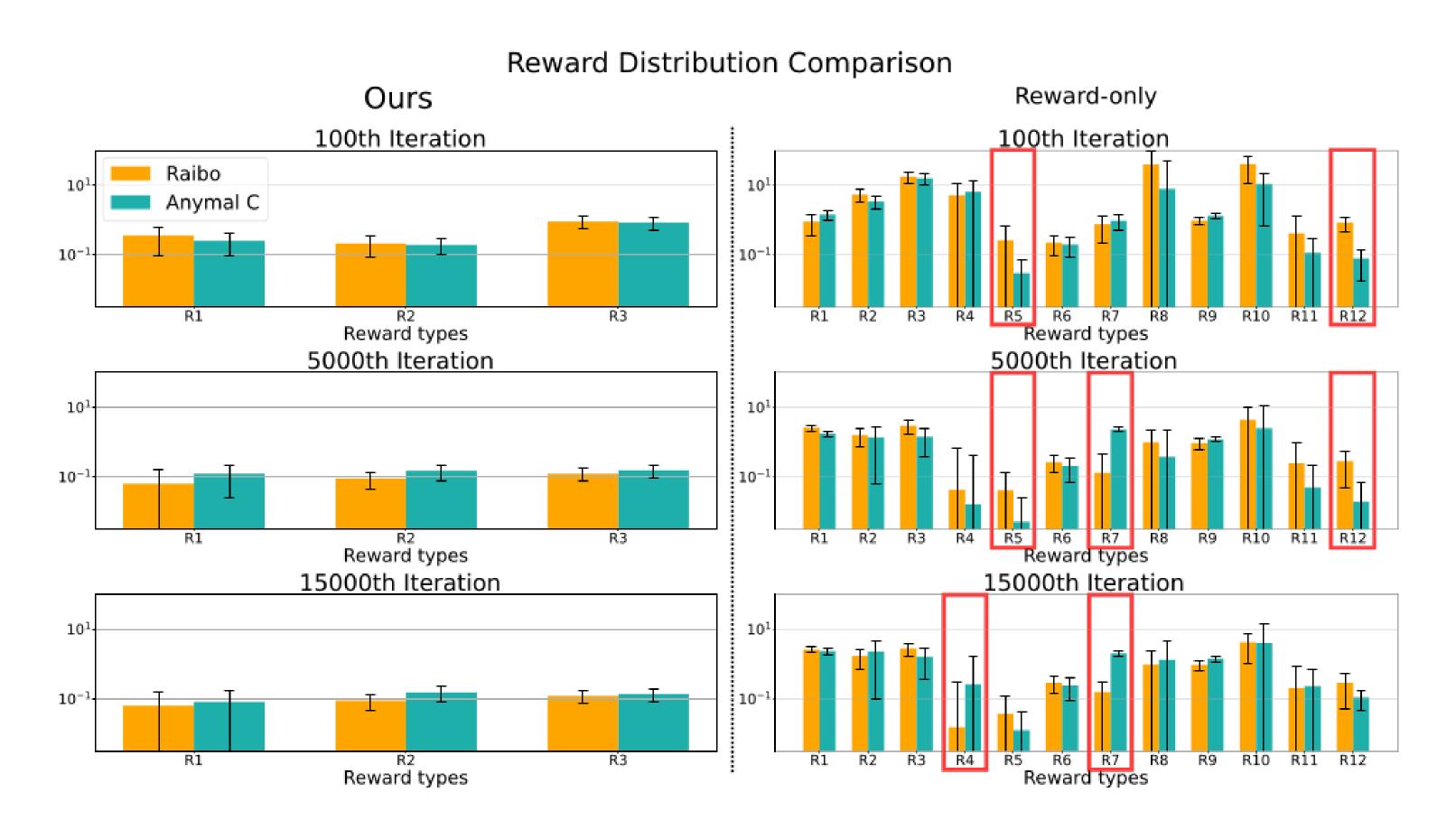
Framework



Comparison with Reward-only framework

- Generalizability
 - Tested by transferring it from Raibo to ANYmal, which has different physical properties.
 - Reward-Only Framework
 - Poor locomotion performance when transferred to the ANYmal.
 - Did not generalize well.
 - Proposed Framework
 - Explicit constraints helped ensure that the motion style was more consistent across different robots.
- Performance & Engineering Effort
 - Reward-Only Framework
 - When transferring the policy to a different robot, different physical properties led to significant changes in the reward signal distributions.
 - Time-consuming and needs to be repeated for each new robot or task.
 - Proposed Framework
 - Thus constraints correspond directly to physical limits, significantly reduced the need for extensive reward engineering.

Comparison with Reward-only framework



Comparison with Reward-only framework

