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Introduction

e Step to build an RL controller

1.Design a neural network architecture with observation and action spaces.
2.Generate abundant environment interaction scenarios.
3.Design Reward terms and tune their reward coefficients.

Why constraints have not been used explicitly to train policies for complex robotic systems?

e Advantages of using Constraints.

1.Training pipeline will be more generalizable across similar robot platforms
2.Engineering process will be more straightforward and less time-consuming
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Contribution

 Introduce an RL framework consisting of both rewards and constraints.
« Demonstrate the capability of leveraging constraints in the learning pipeline in real-world.
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Constrained Markov Decision Process

7" = arg max J(m)

" = arg max J(m) D - meeeee- phvora A

n€Elly

--------------------------
| O |
: |
i I(’I‘T} = J IE:P Z '}’tR(St: (Lt Si‘—l—l}:| :
(1) Probabilistic constraint | P10 =0 |
| - |
i S e - . | O |
Prob((s,a,s’) € S) Oilnndie 0, if (.s,a: s)ES : Je (ﬂ') — Ep Z ’}’tcﬁ;(stg ay. f‘ft—l—l) i :
= E (Ci(s,a,8")] < Dy | 1, otherwise, : AR P I
I p,x. P | L e e e e e e -____________________l
e e
(2) Average constraint i Tiy1 = alg max EEH [A™ (s, a)] :
________________________________ : e Qa~Tr :
g |
. _E_lf(s,a,5)] Culs.a.8) = f(s.a.5) : oo () L [AT: (s,a)] <dp Yk :
[ k(s,a,8) = f(s,a,s 1s.t. Jo, (1) + ——— Al (s, a ;. 0
— EI’ ICk(s,a,s")] < Dy : Cr i 1 — Y .‘:rt;u-:fzi Cr\™ = Ok :
P, | [ ] I
““““““““““““““““““ i I
i Dgp(mllm) <9 !

[42] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained policy optimization,” in Proc. Int. Conf. Mach. Learn., 2017
[48] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015
[43] Y. Liu, J. Ding, and X. Liu, “IPO: Interior-point policy optimization under constraints,” in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 04, 2020



Policy Optimization
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penalize the policy as it gets closer to
violating the constraint.
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o If JCk(ﬂ') is low
o policy is well within the constraint

o logarithmic term has a high value
o contributes positively to the overall objective function

o If Joi(m)approached dj,
o effectively reducing the overall objective function

o apply steep penalty as it gets closer to the constraint limit

e If dj istoo low
o ensure safety, but limit the policy’s ability to explore and

achieve high rewards
o |lead to sub-optimal policies where the agent is overly

conservative



Modified IPO

e Adaptive Constraint Thresholding e Multihead Cost Value Function
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‘ _________________________ the multihead architecture allows the network to share a common backbone.

y 4 |
k e A single neural network estimates all constraint values.

ith iteration

| Vi }
[ 1/}
Ht '

— 1 4+ 1th 1teration 1
1 E:> Multi-head |
L | > Cost

.




Framework
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Comparison with Reward-only framework

e Generalizability
o Tested by transferring it from Raibo to ANYmal, which has different physical properties.

= Reward-Only Framework
e Poor locomotion performance when transferred to the ANYmal.
e Did not generalize well.

* Proposed Framework
o Explicit constraints helped ensure that the motion style was more consistent across

different robots.

e Performance & Engineering Effort
= Reward-Only Framework
« When transferring the policy to a different robot, different physical properties led to
significant changes in the reward signal distributions.
e Time-consuming and needs to be repeated for each new robot or task.
= Proposed Framework
e Thus constraints correspond directly to physical limits, significantly reduced the need for
extensive reward engineering.



Comparison with Reward-only framework
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Comparison with Reward-only framework
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